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PTAs — The Elevator Pitch
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S. Taylor & C. Mingarelli, adapted from gwplotter.org (Moore, Cole, Berry 2014) and based on a figure in Mingarelli & Mingarelli (2018). Illustration of merging black holes adapted from R. Hurt/Caltech-JPL/EPA



PTAs — The Elevator Pitch
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John Rowe Animation/Australia Telescope National Facility, CSIRO

Cross-correlation signature of  
Gaussian stationary, isotropic,  

stochastic GW signal

David Champion



Big Bang

Big Bang

Galaxies grow via mergers over cosmic time

       = Supermassive Black Hole

Supermassive black holes pair 
within galactic merger remnant.

fmin =
1

Tobs
fmax ∼

1
2Δt

∼ 2 nHz ∼ 400 nHz

PTAs — The Elevator Pitch
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From pulses  
to TOAs
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good timing solution

error in frequency derivative

error in position

unmodeled proper motion

Lorimer & Kramer (2005)

Creating a  
timing  

ephemeris
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Pulsar-timing Data Model

⃗tTOA = ⃗tdet + ⃗t stoch

Deterministic Stochastic
timing ephemeris per-pulsar achromatic red noise 

per-pulsar white noise
transient noise features per-pulsar chromatic red noise

single resolvable GW signals interpulsar-correlated achromatic processes GWB

⃗δt ≡ ⃗tTOA − ⃗tdet( ⃗β 0) Timing residuals

random Gaussian processes



ICERM, Brown University, 11–19–2020Stephen R. Taylor

Sources of noise

Verbiest & Shaifullah (2018)
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Sources of noise

Verbiest & Shaifullah (2018)
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Sources of noise

Verbiest & Shaifullah (2018)
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• Deviations around best-fit of timing 
ephemeris 

• White noise  
• TOA measurement uncertainties 
• Extra unaccounted white-noise from 

receivers 
• Pulse phase “jitter”

Pulsar-timing Data Model

δt = δttm + δtwhite + δtred

• Intrinsic low-frequency processes 
• Rotational instabilities lead to random 

walk in phase, period, period-derivative 
• Radio-frequency dependent dispersion-

measure variations 

• Spatially-correlated low-frequency 
processes 
• Stochastic variations in time standards 
• Solar-system ephemeris errors 
• Gravitational-wave background
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Timing Ephemeris

tdet,i( ⃗β ) = tdet,i( ⃗β 0) + ∑
j

∂tdet,i

∂βj ⃗β 0

× (βj − β0,j)

⃗tdet( ⃗β ) = ⃗tdet( ⃗β 0) + M ⃗ϵ

Timing ephemeris design  
matrix for linear offsets
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Timing Ephemeris

Temporal behavior of  
timing ephemeris basis
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White Noise (1/2)

⟨ni,μnj,ν⟩ = F2
μσ2

i δijδμν + Q2
μδijδμν

“Radiometer noise”— 
pulse template fitting 
uncertainties

EFAC = Extra FACtor 
to correct uncertainties

• Flat power-spectral density across all sampling frequencies 
• No inter-pulsar correlations 

EQUAD = Extra QUADrature
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⟨nJ
i,μnJ

j,ν⟩ = J2
μδe(i)e( j)δμν

• Fitting a template to a finite-pulse folded 
observation can give “jitter” errors 

• Simultaneous observations across many 
radio sub-bands in an epoch will have 
correlated jitter errors 

ECORR = Extra CORRelated white noise

White Noise (2/2)

epoch

Radiometer, EFAC, EQUAD
ECORR
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Red Processes (1/5)
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⃗δt red = F ⃗a

• Time-domain covariance matrix is large and dense 

• But we only care abut the lowest frequencies 
• Use a rank-reduced formalism for covariance

⟨δtiδtj⟩ = C( | ti − tj | )

⟨ ⃗δt red ⃗δt
T
red⟩ = F⟨ ⃗a ⃗a T⟩FT

C = FϕFT

Red Processes (2/5)
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⃗δt red = F ⃗a

Fourier design matrix over small number of modes

Red Processes (3/5)



ICERM, Brown University, 11–19–2020Stephen R. Taylor

⃗δt red = F ⃗a Fourier coefficients

p( ⃗a | ⃗η ) =
exp (− 1

2
⃗a Tϕ( ⃗η )−1 ⃗a )

det(2πϕ( ⃗η ))

[ϕ](ak)(bj) = Γabρkδkj + κakδkjδab

Overlap Reduction Function GWB PSD
Intrinsic red-noise PSD

Red Processes (4/5)
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ρ( f ) = S( f )Δf =
hc( f )2

12π2f 3

1
TGWB PSD

Γab ∝ (1 + δab)∫S2

d2Ω̂ P(Ω̂)[F+
a (Ω̂)F+

b (Ω̂) + F×
a (Ω̂)F×

b (Ω̂)]GWB ORF

PTA overlap reduction 
function for  Gaussian 
stationary, isotropic 
stochastic GWB

“Hellings & Downs Curve” (1983)

Red Processes (5/5) • power laws 
• per frequency 
• GP emulators
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The PTA Likelihood

⃗δt = M ⃗ϵ + F ⃗a + U ⃗j + ⃗n
small linear perturbations 

around best-fit timing solution low-frequency processes 
in Fourier basis

jitter white noise

Lentati et al. (inc Taylor) (2013)
van Haasteren & Vallisneri (2014a,b)

~ few tens ~ couple of hundred

“M” is matrix of TOA derivatives 
wrt timing-model parameters 

“F” has columns of sines and 
cosines for each frequency

“U” has block diagonal structure, 
with ones filling each block

~ few tens

[M] = NTOA × Ntm [F] = NTOA × 2Nfreqs [U] = NTOA × Nepochs
[ ⃗ϵ ] = Ntm [ ⃗a ] = 2Nfreqs [ ⃗j] = Nepochs
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The PTA Likelihood

Start with Gaussian white noise likelihood

p( ⃗δt | ⃗ϵ , ⃗a , ⃗j) =
exp [− 1

2 ( ⃗δt − M ⃗ϵ − F ⃗a − U ⃗j)
T

N−1 ( ⃗δt − M ⃗ϵ − F ⃗a − U ⃗j)]
det(2πN)

p( ⃗n ) =
exp (− 1

2
⃗n TN−1 ⃗n )

det(2πN)

p( ⃗δt | ⃗b ) =
exp [− 1

2 ( ⃗δt − T ⃗b )
T

N−1 ( ⃗δt − T ⃗b )]
det(2πN)

b =

2

4
✏
a
j

3

5

T ⃗b = M ⃗ϵ + F ⃗a + U ⃗j

T = [M F U]
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The PTA Likelihood
But we’re describing all stochastic terms as random Gaussian processes…

p( ⃗b | ⃗η ) =
exp (− 1

2
⃗b TB−1 ⃗b )

det(2πB)

hierarchical modelling

(analytically!) marginalize over coefficients

p( ⃗η , ⃗b | ⃗δt) ∝ p( ⃗δt | ⃗b )p( ⃗b | ⃗η )p( ⃗η )

p( ⃗η | ⃗δt) = ∫ p( ⃗η | ⃗δt) d ⃗b

p( ⃗η | ⃗δt) ∝
exp (− 1

2
⃗δt
T
C−1 ⃗δt)

det(2πC)
p( ⃗η ) C = N + TBTT
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The PTA Likelihood
what are we actually doing here?

this is just the Wiener-Khinchin theorem!

Much easier and faster than  inversionNTOA × NTOA

Woodbury lemma

C = N + TBTT

[TBTT](ab),τ =
Nf

∑
k

[ϕ]abcos(2πkτ/T)

C−1 = (N−1 + TBTT)−1

= N−1 − N−1T(B−1 + TTN−1T)−1TTN−1
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The PTA Likelihood

Without inter-pulsar correlations  
[~ tens of ms] 

With inter-pulsar correlations  
[~few seconds]

courtesy J. Ellis

The PTA Bayesian Network



NANOGrav 12.5yr Dataset Search (arXiv:2009.04496), 
corresponding author: Joe Simon (JPL / CU-Boulder)
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A Common-spectrum Process NANOGrav 12.5yr Dataset Search 
(arXiv:2009.04496), 
corresponding author: Joe Simon (JPL / CU-Boulder)

A steep-spectrum process in common across NANOGrav’s 45-pulsar array with max baseline of 12.9 years
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A Common-spectrum Process NANOGrav 12.5yr Dataset Search 
(arXiv:2009.04496), 
corresponding author: Joe Simon (JPL / CU-Boulder)

Dropout factor = cross-validation probability
i.e. how much does each pulsar support what is found by all other pulsars?

ICERM, Brown University, 11–19–2020Stephen R. Taylor

S. Vigeland, S. Taylor, M. Vallisneri



A Common-spectrum Process

• Inter-pulsar correlations remain insignificant.

• Odds ratios for Hellings & Downs correlations 
~2–4 depending on ephemeris modeling.

Bayesian ORF recovery 
using techniques from 
Taylor, Gair, Lentati (2013)

Frequentist ORF recovery 
—> Vigeland et al. (2018), 
Chamberlin et al. (2015), etc.

NANOGrav 12.5yr Dataset Search 
(arXiv:2009.04496), 
corresponding author: Joe Simon (JPL / CU-Boulder)
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A Common-spectrum Process
• Assess the significance of spatial 

correlations by constructing null 
distribution. 

• LIGO-Virgo-KAGRA use time slides…
we use phase shifts (Taylor et al. 
2017) and sky scrambles (Cornish & 
Sampson 2016; Taylor et al. 2017). 

• p ~ 5 - 10%

NANOGrav 12.5yr Dataset Search 
(arXiv:2009.04496), 
corresponding author: Joe Simon (JPL / CU-Boulder)
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The Road To & Beyond Detection
…Or “what to expect when you're expecting to detect a signal”.

Simulate up to 20 years of PTA data, forecasting from the 45 pulsars in the NG 12.5yr data Dr. Nihan Pol

total S/N (from full log-likelihood ratio) 
cross-correlation S/N

̂ρ =
ρHD =

 
 

̂ρ = 23
ρHD = 3

T = 12 yrs

 
 

̂ρ = 68
ρHD = 5

T = 15 yrs

 
 

̂ρ = 156
ρHD = 9

T = 20 yrs

Full team: Nihan Pol, Stephen Taylor, Luke Kelley,  
Joe Simon, Sarah Vigeland, Siyuan Chen
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The Road To & Beyond Detection
…Or “what to expect when you're expecting to detect a signal”.

Probe the multipolar structure of the inter-pulsar correlations

Γab =
∞

∑
l=0

al Pl(cos θab)

al =
3
4

N2
l (2l + 1)

Nl =
2(l − 2)!
(l + 2)!

Isotropic GWB:
Gair, Romano, 
Taylor, Mingarelli (2014)

H
D
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The Road To & Beyond Detection
…Or “what to expect when you're expecting to detect a signal”.

total signal-to-noise ratio, ̂ρ

Δ
A G

W
B

/A
G

W
B

Δ
α/

α

hc( f ) = AGWB ( f
1 yr−1 )

α

ΔAGWB/AGWB = 44 × ( ̂ρ
25 )

−2/5

%

Δα/α = 40 × ( ̂ρ
25 )

−1/2

%

parameter uncertainty scaling laws

Can relate  to  and factors like , , , etc.̂ρ ρHD T σRMS Npulsar

NG12.5yr

NG12.5yr

“Astrophysics Milestones 
For Pulsar Timing Array 

Gravitational Wave Detection”, 
Pol, Taylor et al., arXiv:2010.11950
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Image credit: Frans Pretorius, APS/Carin Cain

Summary

• Pulsar Timing Arrays are sensitive to nanohertz gravitational waves.

• We use rank-reduced time-domain modeling of stochastic processes across 
dozens of pulsars and over decades of observations.

• If the NANOGrav result hints at a GWB, then detection and 
characterization could be within a few years (expedited by fusing 
datasets together in the IPTA).

• The road beyond detection will inform demographics and final-parsec binary 
dynamical interactions of supermassive binary black holes.
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